Applied Mathematics 3 PDF Download

3
2087
Applied Mathematics 3
Applied Mathematics 3 PDF Download

Applied Mathematics 3 PDF Download

Applied Mathematics 3 PDF BTEUP Electronics Engineering Syllabus PDF Download 3rd Semester.

  • Name of Examination Board:Board of Technical Education, Uttar Pradesh
  • Exam Name: Polytechnic 2020
  • Post Category: BTEUP syllabus 2021
  • Syllabus Status: Available
  • Examination Year Semester: 1st-2nd-3rd Year
  • Location of Examination: Uttar Pradesh State, India
  • Date of BTEUP: Update Soon
  • Availability of Exam Syllabus: PDF format
  • BTEUP exam pattern 2020 – 21: available Course wise
  • BTEUP 2020 syllabus:Download Now online

 

Applied Mathematics-III

APPLIED MATHEMATICS –III में आप इस पाठ्यक्रम की सामग्री के बारे में जानेंगे, कुछ प्राथमिक और उन्नत गणित एल्गोरिदम और इंजीनियरिंग समस्याओं को सुलझाने के उनके अनुप्रयोगों की समझ प्रदान करते हैं।

  1. Matrices
  2. Differential Calculus
  3. Differential Equation
  4. Integral Calculus-II
  5. Probability and Statistics

Only 5 Chapters That You Have to read in Applied Mathematics – III

And here are the marking scheme according to Chapters in Applied Math – III

Download BTEUP Syllabus Of Electronics Engineering In PDF provided by Board of Technical Education Uttar Pradesh. bteup syllabus mechanical engineering 3rd semester, download bteup syllabus mechanical engineering 4th semester, download bteup syllabus mechanical engineering 5th semester, BTEUP Electronics Engineering Syllabus PDF Download 3rd Semester.

Topic in Applied Mathematics III

  1. Matrices
  2. Differential Calculus
  3. Differential Equations
  4. Integral Calculus
  5. Probability & Statistics

 

  1. MATRICES : (12 Marks)

1.1 Algebra of Matrices, Inverse :

Addition, Multiplication of matrices, Null matrix and a unit matrix, Square matrix, Symmetric, Skew symmetric, Hermitian, Skew hermition, Orthagonal, Unitary, diagonal and Triangular matrix, Determinant of a matrix. Definition and Computation of inverse of a matrix.

1.2 Elementary Row/Column Transformation :

Meaning and use in computing inverse and rank of a matrix.

1.3 Linear Dependence, Rank of a Matrix

Linear dependence/independence of vectors, Definition and computation of a rank of matrix. Computing rank through determinants, Elementary row transformation and through the concept of a set of independent vectors, Consistency of equations.

1.4 Eigen Pairs, Cayley-Hamilton Theorem :

Definition and evaluation of eign values and eign vectors of a matrix of order two and three, Cayley-Hamilton theorem (without Proof) and its verification, Use in finding inverse and powers of a matrix.

 

  1. DIFFERENTIAL CALCULUS : (10 Marks)

2.1 Function of two variables, identification of surfaces in space, conicoids

2.2 Partial Differentiation :

Directional derivative, Gradient, Use of gradient f, Partial derivatives, Chain rule, higher order derivatives, Eulens theorem for homogeneous functions, Jacobians.

2.3 Vector Calculus :

Vector function, Introduction to double and triple integral, differentiation and integration of vector functions, gradient, divergence and curl, differential derivatives.

  1. DIFFERENTIAL EQUATION : (10 Marks)

3.1 Formation, Order, Degree, Types, Solution :

Formation of differential equations through physical, geometrical, mechanical and electrical considerations, Order, Degree of a differential equation, Linear, Nonlinear equation.

3.2 First Order Equations :

Variable separable, equations reducible to separable forms, Homogeneous equations, equations reducible to homogeneous forms, Linear and Bernoulli form exact equation and their solutions.

3.3 Higher Order Linear Equation :

Property of solution, Linear differential equation with constant coefficients (PI for X=eax, Sin ax, Cos ax, Xn, eaxV, XV.

  1. INTEGRAL CALCULUS – II: (12 Marks)

4.1 Beta and Gamma Functions :

Definition, Use, Relation between the two, their use in evaluating integrals.

4.2 Fourier Series : Fourier series of f(x),-n<x

<n, Odd and even function,Half range series. 4.3 Laplace Transform : Definition, Basic theorem and properties, Unit step and Periodic functions, inverse laplace transform, Solution of ordinary differential equations. >

4.3 Laplace Transform :

Definition, Basic theorem and properties, Unit step and Periodic functions, inverse laplace transform, Solution of ordinary differential equations.

  1. PROBABILITY AND STATISTICS : ( 6 Marks)

5.1 Probability :

Introduction, Addition and Multiplication theorem and simple problem.

5.2 Distribution :

5.3 Discrete and continuous distribution, Binomial Distribution, Poisson Distribution, Normal Distribution..

Update या Notification पाने के लिए हमारे Social Media से जुड़े

👉यह भी पढे: Up Polytechnic 3rd Semester Syllabus Of Information Technology 2020

👉यह भी पढे: BTEUP Syllabus Mechanical Engineering 3rd Semester

👉यह भी पढे: BTEUP Electronics Engineering Syllabus PDF Download 3rd Semester.

👉यह भी पढे: BTEUP Civil Engineering Syllabus PDF Download 3rd Semester.

👉यह भी पढे: BTEUP Syllabus 2020 Computer Science For All Semester Download PDF

👉यह भी पढे: Environmental Studies Notes PDF Free Download In English.


CCC Exam Chapter 1

👉यह भी पढे: Introduction to Computer In Hindi (कंप्यूटर का परिचय)

👉यह भी पढे: What is Output Device And Input Device In Hindi

👉यह भी पढे: Introduction To Computer | Computer Memory & Storage

👉यह भी पढे: IT gadgets and their applications (आईटी गैजेट और उनके अनुप्रयोग)


👉Also Read: How to improve English for competitive exams?

👉Also Read: CCC Exam Ki Taiyari Kaise Kre

👉Latest Sarkari Jobs Notification.

Follow Our Social Links (like telegram, instagram, facebook)

👉Our Facebook Page: https://facebook.com/infoattayarijeetki

👉Our Telegram Channel: https://t.me/tayarijeetki

👉Our Instagram Id: https://www.instagram.com/tayarijeetki/

Announcement: अगर आपको लिखना पसंद है तो आप हमारे वैबसाइट के लिए भी लिख सकते है और Support कर सकते है। लिखने के संबंध मे हमारे Instagram id या Facebook Page द्वारा Message कर सकते है।

PDF Download करने के लिए हमारे Telegram Channel पर join करे……..

3 COMMENTS

LEAVE A REPLY

Please enter your comment!
Please enter your name here